15.10.13 - Two EPFL
spin-offs, senseFly and Pix4D, have modeled the Matterhorn in 3D, at a
level of detail never before achieved. It took senseFly’s ultralight
drones just six hours to snap the high altitude photographs that were
needed to build the model.
They weigh less than a kilo each, but they’re as agile as eagles
in the high mountain air. These “ebees” flying robots developed by
senseFly, a spin-off of EPFL’s Intelligent Systems Laboratory (LIS),
took off in September to photograph the Matterhorn from every
conceivable angle. The drones are completely autonomous, requiring
nothing more than a computer-conceived flight plan before being launched
by hand into the air to complete their mission.
Three
of them were launched from a 3,000m “base camp,” and the fourth made
the final assault from the summit of the stereotypical Swiss landmark,
at 4,478m above sea level. In their six-hour flights, the completely
autonomous flying machines took more than 2,000 high-resolution
photographs. The only remaining task was for software developed by
Pix4D, another EPFL spin-off from the Computer Vision Lab (CVLab), to
assemble them into an impressive 300-million-point 3D model. The model
was presented last weekend to participants of the Drone and Aerial
Robots Conference (DARC), in New York, by Henri Seydoux, CEO of the
French company Parrot, majority shareholder in senseFly.
All-terrain and even in swarms
“We want above all to demonstrate what our devices are capable of
achieving in the extreme conditions that are found at high altitudes,”
explains Jean-Christophe Zufferey, head of senseFly. In addition to the
challenges of altitude and atmospheric turbulence, the drones also had
to take into consideration, for the first time, the volume of the object
being photographed. Up to this point they had only been used to survey
relatively flat terrain.
Last week the dynamic Swiss company –
which has just moved into new, larger quarters in Cheseaux-sur-Lausanne –
also announced that it had made software improvements enabling drones
to avoid colliding with each other in flight; now a swarm of drones can
be launched simultaneously to undertake even more rapid and precise
mapping missions.