Entries tagged as energyRelated tags data center facebook hardware innovation&society network software technology mobile social network 3d 3d printing 3d scanner ad ai amd android api apple ar arduino army artificial intelligence asus augmented reality automation camera car chrome cloud advertisements algorythm amazon API art big data book browser cloud computing code computer history sensor privacy tracking wifi wireless app app store botnet sustainability google 3g cpu cray crowd-sourcing display DIY power printer securityThursday, October 03. 2013World's Largest Solar Thermal Energy Plant Opens in CaliforniaVia Inhabitat -----
The much-anticipated Ivanpah Solar Electric Generating System just kicked into action in California’s Mojave Desert. The 3,500 acre facility is the world’s largest solar thermal energy plant, and it has the backing of some major players; Google, NRG Energy, BrightSource Energy and Bechtel have all invested in the project, which is constructed on federally-leased public land. The first of Ivanpah’s three towers is now feeding energy into the grid, and once the site is fully operational it will produce 392 megawatts — enough to power 140,000 homes while reducing carbon emissions by 400,000 tons per year. Ivanpah is comprised of 300,000 sun-tracking mirrors (heliostats), which surround three, 459-foot towers. The sunlight concentrated from these mirrors heats up water contained within the towers to create super-heated steam which then drives turbines on the site to produce power. The first successfully operating unit will sell power to California’s Pacific Gas and Electric, as will Unit 3 when it comes online in the coming months. Unit 2 is also set to come online shortly, and will provide power to Southern California Edison. Construction began on the facility in 2010, and achieved it’s first “flux” in March, a crucial test which proved its readiness to begin commercial operation. Tests this past Tuesday formed Ivanpah’s “first sync” which began feeding power into the grid. As John Upton at Grist points out, the project is not without its critics, noting that some “have questioned why a solar plant that uses water would be built in the desert — instead of one that uses photovoltaic panels,” while others have been upset by displacement of local wildlife—notably 100 endangered desert tortoises. But the Ivanpah plant still constitutes a major milestone, both globally as the world’s largest solar thermal energy plant, and locally for the significant contribution it will make towards California’s renewable energy goal of achieving 3,000 MW of solar generating capacity through public utilities and private ownership. Images © BrightSource Energy Thursday, May 23. 2013Plug into a plant: A new approach to clean energy harvestingVia gizmag -----
Millions of years of evolution has resulted in plants being the most efficient harvesters of solar energy on the planet. Much research is underway into ways to artificially mimic photosynthesis in devices like artificial leaves, but researchers at the University of Georgia (UGA) are working on a different approach that gives new meaning to the term “power plant.” Their technology harvests energy generated through photosynthesis before the plants can make use of it, allowing the energy to instead be used to run low-powered electrical devices. Photosynthesis turns light energy into chemical energy by splitting water atoms into hydrogen and oxygen. This process produces electrons that help create sugars that the plant uses to fuel growth and reproduction. A team led by Ramaraja Ramasamy, assistant professor in the UGA College of Engineering, is developing technology that would interrupt the photosynthesis process and capture the electrons before the plant puts them to use creating sugars. The technology involves interrupting the pathways along which the electrons flow by manipulating the proteins contained in thylakoids. Thylakoids are membrane-bound compartments at the site of the light reactions of photosynthesis that are responsible for capturing and storing energy from sunlight. The modified thylakoids are immobilized on a specially designed backing of carbon nanotubes that acts as an electrical conductor to capture the electrons and send them along a wire. The researchers say that small-scale experiments of this system have yielded a maximum current density that is two orders of magnitude larger than previously reported for similar systems. While you won’t be running your HDTV off the nearest tree anytime soon, Ramasamy says the technology has the potential to find its way into less power-intensive applications in the not too distant future. "In the near term, this technology might best be used for remote sensors or other portable electronic equipment that requires less power to run," he said. "If we are able to leverage technologies like genetic engineering to enhance stability of the plant photosynthetic machineries, I'm very hopeful that this technology will be competitive to traditional solar panels in the future." Ramasamy and his team are already working to improve the stability and output of the technology to get it to a stage suitable for commercialization. "We have discovered something very promising here, and it is certainly worth exploring further," he said. "The electrical output we see now is modest, but only about 30 years ago, hydrogen fuel cells were in their infancy, and now they can power cars, buses and even buildings." The team’s study appears in the journal Energy & Environmental Science. Source: University of Georgia Tuesday, May 07. 2013Graphene paint could power homes of the futureVia The Telegraph -----
Photo: The University of Manchester
Scientists at the University of Manchester used wafers of graphene, the discovery of which won researchers a Nobel Prize, with thin layers of other materials to produce solar powered surfaces. The resulting surfaces, which were paper thin and flexible, were able to absorb sunlight to produce electricity at a level that would rival existing solar panels. These could be used to create a kind of “coat” on the outside of buildings to generate power needed to run appliances inside while also carrying other functions too, such as being able to change colour. The researchers are now hoping to develop the technology further by producing a paint that can be put onto the outside of buildings.
But the scientists also say the new material could also allow a new generation of super-thin hand-held devices like mobile phones that can be powered by sunlight. Professor Kostya Novoselov, one of the Nobel Laureates who discovered graphene, a type of carbon that forms sheets just one atom thick, said: “We have been trying to go beyond graphene by combining it with other one atom thick materials. “What we have been doing is putting different layers of these materials one on top of the other and what you get is a new type of material with a unique set of properties. “It is like a book – one page contains some information but together the book is so much more. “We have demonstrated that we can produce a very efficient photovoltaic device. The fact it is flexible will hopefully make it easier to use. “We are working on paints using this material as our next work but that is further down the line.” Graphene was first discovered in 2004. Andrew Geim and Professor Novoselov won the 2010 Nobel Prize in Physics for demonstrating its remarkable properties – that it was harder than diamond, transparent and could conduct electricity while only being one atom thick. Professor Novoselov and colleagues at the University of Singapore found that if they combined layers of graphene with single one atom thick layers of a material known as transition metal dichalcogenides, which react to light, they could generate electricity. Their findings are published in the journal Science. Professor Novoselov added: “We are taking about a new paradigm of material science. “We can make sandwiches of materials and produce any kind of functionality so we can put transistors and photovoltaics to produce power for them. “The implementations would go much further than simple solar powered cells.” Friday, April 19. 2013A new way to report data center's Power and Water Usage Effectiveness (PUE and WUE)-----
Today (18.04.2013) Facebook launched two public dashboards that report continuous, near-real-time data for key efficiency metrics – specifically, PUE and WUE – for our data centers in Prineville, OR and Forest City, NC. These dashboards include both a granular look at the past 24 hours of data and a historical view of the past year’s values. In the historical view, trends within each data set and correlations between different metrics become visible. Once our data center in Luleå, Sweden, comes online, we’ll begin publishing for that site as well. We began sharing PUE for our Prineville data center at the end of Q2 2011 and released our first Prineville WUE in the summer of 2012. Now we’re pulling back the curtain to share some of the same information that our data center technicians view every day. We’ll continue updating our annualized averages as we have in the past, and you’ll be able to find them on the Prineville and Forest City dashboards, right below the real-time data. Why are we doing this? Well, we’re proud of our data center efficiency, and we think it’s important to demystify data centers and share more about what our operations really look like. Through the Open Compute Project (OCP), we’ve shared the building and hardware designs for our data centers. These dashboards are the natural next step, since they answer the question, “What really happens when those servers are installed and the power’s turned on?” Creating these dashboards wasn’t a straightforward task. Our data centers aren’t completed yet; we’re still in the process of building out suites and finalizing the parameters for our building managements systems. All our data centers are literally still construction sites, with new data halls coming online at different points throughout the year. Since we’ve created dashboards that visualize an environment with so many shifting variables, you’ll probably see some weird numbers from time to time. That’s OK. These dashboards are about surfacing raw data – and sometimes, raw data looks messy. But we believe in iteration, in getting projects out the door and improving them over time. So we welcome you behind the curtain, wonky numbers and all. As our data centers near completion and our load evens out, we expect these inevitable fluctuations to correspondingly decrease. We’re excited about sharing this data, and we encourage others to do the same. Working together with AREA 17, the company that designed these visualizations, we’ve decided to open-source the front-end code for these dashboards so that any organization interested in sharing PUE, WUE, temperature, and humidity at its data center sites can use these dashboards to get started. Sometime in the coming weeks we’ll publish the code on the Open Compute Project’s GitHub repository. All you have to do is connect your own CSV files to get started. And in the spirit of all other technologies shared via OCP, we encourage you to poke through the code and make updates to it. Do you have an idea to make these visuals even more compelling? Great! We encourage you to treat this as a starting point and use these dashboards to make everyone’s ability to share this data even more interesting and robust. Lyrica McTiernan is a program manager for Facebook’s sustainability team. Friday, January 25. 2013Electromagnetic Harvester draws power from the world around youVia DVICE -----
No matter how many times you watch The Matrix, the creepiest part is seeing the whole of humanity hooked up to pods to act as living power generators for their robot masters. Now Germany-based designer Dennis Siegel has created a kind of mini version of this idea that he calls an Electromagnetic Harvester. The tiny device allows him to draw redundant energy from household appliances, mobile devices, and even outside aerial electrical lines. An LED light indicates when power is effectively being drawn in, and that power is conveniently stored in what appears to be a common AA battery. According to Siegel, it takes the Electromagnetic Harvester about one day to fully charge one of the batteries, depending on the strength of the electromagnetic field being sourced. You can see video of the Electromagnetic Harvester in action in the video below.
Friday, August 26. 2011MicroGen Chips to Power Wireless Sensors Through Environmental VibrationsVia Daily Tech ----- MicroGen Systems says its chips differ from other vibrational energy-harvesting devices because they have low manufacturing costs and use nontoxic material instead of PZT, which contains lead.
(TOP) Prototype wireless sensor battery with four energy-scavenging chips. (BOTTOM) One chip with a vibrating cantilever (Source: MicroGen Systems )
MicroGen
Systems is in the midst of creating energy-scavenging chips that will convert
environmental vibrations into electricity to power wireless sensors.
Thursday, July 07. 2011Ambient electromagnetic energy harnessed for small electronic devices
Via Physorg ----- Researchers have discovered a way to capture and harness energy transmitted by such sources as radio and television transmitters, cell phone networks and satellite communications systems. By scavenging this ambient energy from the air around us, the technique could provide a new way to power networks of wireless sensors, microprocessors and communications chips. Georgia Tech School of Electrical and Computer Engineering professor Manos Tentzeris holds a sensor (left) and an ultra-broadband spiral antenna for wearable energy-scavenging applications. Both were printed on paper using inkjet technology.
"There is a large amount of electromagnetic energy all around us, but nobody has been able to tap into it," said Manos Tentzeris, a professor in the Georgia Tech School of Electrical and Computer Engineering who is leading the research. "We are using an ultra-wideband antenna that lets us exploit a variety of signals in different frequency ranges, giving us greatly increased power-gathering capability."
Tentzeris and his team are using inkjet printers to combine sensors, antennas and energy-scavenging capabilities on paper or flexible polymers. The resulting self-powered wireless sensors could be used for chemical, biological, heat and stress sensing for defense and industry; radio-frequency identification (RFID) tagging for manufacturing and shipping, and monitoring tasks in many fields including communications and power usage.
A presentation on this energy-scavenging technology was scheduled for delivery July 6 at the IEEE Antennas and Propagation Symposium in Spokane, Wash. The discovery is based on research supported by multiple sponsors, including the National Science Foundation, the Federal Highway Administration and Japan's New Energy and Industrial Technology Development Organization (NEDO). Communications devices transmit energy in many different frequency ranges, or bands. The team's scavenging devices can capture this energy, convert it from AC to DC, and then store it in capacitors and batteries. The scavenging technology can take advantage presently of frequencies from FM radio to radar, a range spanning 100 megahertz (MHz) to 15 gigahertz (GHz) or higher.
Scavenging experiments utilizing TV bands have already yielded power amounting to hundreds of microwatts, and multi-band systems are expected to generate one milliwatt or more. That amount of power is enough to operate many small electronic devices, including a variety of sensors and microprocessors.
And by combining energy-scavenging technology with super-capacitors and cycled operation, the Georgia Tech team expects to power devices requiring above 50 milliwatts. In this approach, energy builds up in a battery-like super-capacitor and is utilized when the required power level is reached.
The researchers have already successfully operated a temperature sensor using electromagnetic energy captured from a television station that was half a kilometer distant. They are preparing another demonstration in which a microprocessor-based microcontroller would be activated simply by holding it in the air.
Exploiting a range of electromagnetic bands increases the dependability of energy-scavenging devices, explained Tentzeris, who is also a faculty researcher in the Georgia Electronic Design Center (GEDC) at Georgia Tech. If one frequency range fades temporarily due to usage variations, the system can still exploit other frequencies.
Georgia Tech School of Electrical and Computer Engineering professor Manos Tentzeris displays an inkjet-printed rectifying antenna used to convert microwave energy to DC power. It was printed on flexible material. (Georgia Tech Photo: Gary Meek). Georgia Tech School of Electrical and Computer Engineering professor Manos Tentzeris displays an inkjet-printed rectifying antenna used to convert microwave energy to DC power. It was printed on flexible material. (Georgia Tech Photo: Gary Meek).
The scavenging device could be used by itself or in tandem with other generating technologies. For example, scavenged energy could assist a solar element to charge a battery during the day. At night, when solar cells don't provide power, scavenged energy would continue to increase the battery charge or would prevent discharging.
Utilizing ambient electromagnetic energy could also provide a form of system backup. If a battery or a solar-collector/battery package failed completely, scavenged energy could allow the system to transmit a wireless distress signal while also potentially maintaining critical functionalities.
The researchers are utilizing inkjet technology to print these energy-scavenging devices on paper or flexible paper-like polymers -- a technique they already using to produce sensors and antennas. The result would be paper-based wireless sensors that are self-powered, low-cost and able to function independently almost anywhere.
To print electrical components and circuits, the Georgia Tech researchers use a standard-materials inkjet printer. However, they add what Tentzeris calls "a unique in-house recipe" containing silver nanoparticles and/or other nanoparticles in an emulsion. This approach enables the team to print not only RF components and circuits, but also novel sensing devices based on such nanomaterials as carbon nanotubes.
When Tentzeris and his research group began inkjet printing of antennas in 2006, the paper-based circuits only functioned at frequencies of 100 or 200 MHz, recalled Rushi Vyas, a graduate student who is working with Tentzeris and graduate student Vasileios Lakafosis on several projects.
"We can now print circuits that are capable of functioning at up to 15 GHz -- 60 GHz if we print on a polymer," Vyas said. "So we have seen a frequency operation improvement of two orders of magnitude."
The researchers believe that self-powered, wireless paper-based sensors will soon be widely available at very low cost. The resulting proliferation of autonomous, inexpensive sensors could be used for applications that include:
• Airport security: Airports have both multiple security concerns and vast amounts of available ambient energy from radar and communications sources. These dual factors make them a natural environment for large numbers of wireless sensors capable of detecting potential threats such as explosives or smuggled nuclear material.
• Energy savings: Self-powered wireless sensing devices placed throughout a home could provide continuous monitoring of temperature and humidity conditions, leading to highly significant savings on heating and air-conditioning costs. And unlike many of today’s sensing devices, environmentally friendly paper-based sensors would degrade quickly in landfills.
• Structural integrity: Paper or polymer-based sensors could be placed throughout various types of structures to monitor stress. Self-powered sensors on buildings, bridges or aircraft could quietly watch for problems, perhaps for many years, and then transmit a signal when they detected an unusual condition.
• Food and perishable-material storage and quality monitoring: Inexpensive sensors on foods could scan for chemicals that indicate spoilage and send out an early warning if they encountered problems.
• Wearable bio-monitoring devices: This emerging wireless technology could become widely used for autonomous observation of patient medical issues.
(Page 1 of 1, totaling 7 entries)
|
QuicksearchPopular Entries
CategoriesShow tagged entriesSyndicate This BlogCalendar
Blog Administration |