Via PhysOrg
-----
The Fourier transform is one of the most fundamental concepts in the information sciences. It’s a method for representing an irregular signal — such as the voltage fluctuations in the wire that connects an MP3 player to a loudspeaker — as a combination of pure frequencies. It’s universal in signal processing, but it can also be used to compress image and audio files, solve differential equations and price stock options, among other things.
The reason the Fourier transform is so prevalent is an algorithm
called the fast Fourier transform (FFT), devised in the mid-1960s, which
made it practical to calculate Fourier transforms on the fly. Ever
since the FFT was proposed, however, people have wondered whether an
even faster algorithm could be found.
At the Association for Computing Machinery’s Symposium on Discrete
Algorithms (SODA) this week, a group of MIT researchers will present a
new algorithm that, in a large range of practically important cases,
improves on the fast Fourier transform. Under some circumstances, the
improvement can be dramatic — a tenfold increase in speed. The new
algorithm could be particularly useful for image compression, enabling,
say, smartphones to wirelessly transmit large video files without
draining their batteries or consuming their monthly bandwidth
allotments.
Like the FFT, the new algorithm works on digital signals. A digital
signal is just a series of numbers — discrete samples of an analog
signal, such as the sound of a musical instrument. The FFT takes a
digital signal containing a certain number of samples and expresses it
as the weighted sum of an equivalent number of frequencies.
“Weighted” means that some of those frequencies count more toward the
total than others. Indeed, many of the frequencies may have such low
weights that they can be safely disregarded. That’s why the Fourier
transform is useful for compression. An eight-by-eight block of pixels
can be thought of as a 64-sample signal, and thus as the sum of 64
different frequencies. But as the researchers point out in their new
paper, empirical studies show that on average, 57 of those frequencies
can be discarded with minimal loss of image quality.
Heavyweight division
Signals whose Fourier transforms include a relatively small number of
heavily weighted frequencies are called “sparse.” The new algorithm
determines the weights of a signal’s most heavily weighted frequencies;
the sparser the signal, the greater the speedup the algorithm provides.
Indeed, if the signal is sparse enough, the algorithm can simply sample
it randomly rather than reading it in its entirety.
“In nature, most of the normal signals are sparse,” says Dina Katabi,
one of the developers of the new algorithm. Consider, for instance, a
recording of a piece of chamber music: The composite signal consists of
only a few instruments each playing only one note at a time. A
recording, on the other hand, of all possible instruments each playing
all possible notes at once wouldn’t be sparse — but neither would it be a
signal that anyone cares about.
The new algorithm — which associate professor Katabi and professor
Piotr Indyk, both of MIT’s Computer Science and Artificial Intelligence
Laboratory (CSAIL), developed together with their students Eric Price
and Haitham Hassanieh — relies on two key ideas. The first is to divide a
signal into narrower slices of bandwidth, sized so that a slice will
generally contain only one frequency with a heavy weight.
In signal processing, the basic tool for isolating particular
frequencies is a filter. But filters tend to have blurry boundaries: One
range of frequencies will pass through the filter more or less intact;
frequencies just outside that range will be somewhat attenuated;
frequencies outside that range will be attenuated still more; and so on,
until you reach the frequencies that are filtered out almost perfectly.
If it so happens that the one frequency with a heavy weight is at the
edge of the filter, however, it could end up so attenuated that it
can’t be identified. So the researchers’ first contribution was to find a
computationally efficient way to combine filters so that they overlap,
ensuring that no frequencies inside the target range will be unduly
attenuated, but that the boundaries between slices of spectrum are still
fairly sharp.
Zeroing in
Once they’ve isolated a slice of spectrum, however, the researchers
still have to identify the most heavily weighted frequency in that
slice. In the SODA paper, they do this by repeatedly cutting the slice
of spectrum into smaller pieces and keeping only those in which most of
the signal power is concentrated. But in an as-yet-unpublished paper,
they describe a much more efficient technique, which borrows a
signal-processing strategy from 4G cellular networks. Frequencies are
generally represented as up-and-down squiggles, but they can also be
though of as oscillations; by sampling the same slice of bandwidth at
different times, the researchers can determine where the dominant
frequency is in its oscillatory cycle.
Two University of Michigan researchers — Anna Gilbert, a professor of
mathematics, and Martin Strauss, an associate professor of mathematics
and of electrical engineering and computer science — had previously
proposed an algorithm that improved on the FFT for very sparse signals.
“Some of the previous work, including my own with Anna Gilbert and so
on, would improve upon the fast
Fourier transform
algorithm, but only if the sparsity k” — the number of heavily weighted
frequencies — “was considerably smaller than the input size n,” Strauss
says. The MIT researchers’ algorithm, however, “greatly expands the
number of circumstances where one can beat the traditional FFT,” Strauss
says. “Even if that number k is starting to get close to n — to all of
them being important — this
algorithm still gives some improvement over FFT.”